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Abstract

A novel nodal integration technique for the meshfree radial point interpolation method (NI-RPIM) is presented for
solid mechanics problems. In the NI-RPIM, radial basis functions (RBFs) augmented with polynomials are used to con-
struct shape functions that possess the Delta function property. Galerkin weak form is adopted for creating discretized
system equations, in which nodal integration is used to compute system matrices. A stable and simple nodal integration
scheme is proposed to perform the nodal integration numerically. The NI-RPIM is examined using a number of example
problems including stress analysis of an automobile mechanical component. The effect of shape parameters and dimension
of local support domain on the results of the NI-RPIM is investigated in detail through these examples. The numerical
solutions show that the present method is a robust, reliable, stable meshfree method and possesses better computational
properties compared with traditional linear FEM and original RPIM using Gauss integration scheme.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Meshfree methods have been developed and achieved remarkable progress in recent years. In general,
meshfree methods can be categorized into three groups according to the formulation procedures used (Liu
and Gu, 2005). The first category covers the meshfree methods based on strong forms of system equations,
in which discretization is performed directly from the governing differential equations, such as the general
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finite difference method (Liszka and Orkisz, 1980), the smooth particle hydrodynamic (SPH) method (Lucy,
1977; Liu and Liu, 2003) and other meshfree collocation methods. The second category includes the meshfree
methods based on weak forms of system equations, such as the element-free Galerkin (EFG) method (Bely-
tschko et al., 1994), the meshless local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998), the point
interpolation method (PIM) (Liu and Gu, 2001; Liu, 2002) etc. The third category concerns meshfree methods
based on the combination of weak and strong forms, such as the meshfree weak–strong-form (MWS) method
(Liu and Gu, 2003; Liu et al., 2004).

Two types of PIM formulations using the polynomial basis and the radial basis function (RBF) have been
formulated so far (Liu and Gu, 2001; Wang and Liu, 2002a). In the meshfree radial point interpolation
method (RPIM), RBFs augmented with polynomials and nodes in the local support domain are used to con-
struct shape functions and the Galerkin weak form is adopted to derive a set of discrete system equations. The
shape functions so constructed possess the Delta function property, which allows straightforward imposition
of point essential boundary conditions, and many numerical techniques used in FEM can be applied in the
RPIM with minimum modifications. Compared with meshfree methods based on strong form formulations,
meshfree methods based on weak forms can usually achieve higher accuracy and results are very stable. This is
due to the use of integration that provides smooth operations to the system. On the other hand, however,
meshfree weak form methods can be more expensive because the integration needs to be performed numeri-
cally. In addition, background cells are also required for such numerical integrations.

Gauss integration scheme is commonly used for the numerical integration of meshfree weak form methods,
which is very similar to that in the FEM. However, some nodal integration techniques have been suggested for
the integration of weak form methods (Belytschko and Beissel, 1996; Chen et al., 2001). In this work, we
attempt to develop an alternative, stable and simply nodal integration (NI) technique for meshfree weak form
methods and it is implemented in the process of numerical integration for the RPIM. As direct nodal integra-
tion would often cause the phenomenon of instability, Taylor’s expansion is used to serve as the stabilization
terms, which have been studied for FEM (Liu et al., 1985) and other meshfree methods (Liu et al., 1996; Naga-
shima, 1999). In Nagashima’s work, the formulation is based on EFG method that uses MLS shape functions
and first-order of Taylor series expansion to the strain matrix is employed for stabilization. In the present
work, the formulation is based on RPIM, the expansion is applied to the entirety of BTDB and it is expanded
up to second-order. In this case, third-order derivatives of shape functions are required for linear elasticity
problems. The RPIM shape functions created using RBFs fits well to the requirement, as it is one-piecely dif-
ferentiable to any order in the integration domain (Liu, 2002). It is also noted that the expansion of BTDB to
second-order is crucial, because the first-order term will vanish for symmetrical integral domain and has no
stabilization effect. The method so constructed is called NI-RPIM and is examined in detail using a number
of benchmark examples, and applied to stress analysis of an automotive component. This integral scheme is
formulated based on the simple Taylor series expansion and hence it is very easy to implement in any meshfree
weak form method for stable nodal integration.

The outline of this paper is as follows: in Section 2, the procedure leading to RPIM shape functions is brief-
ly introduced. Section 3 briefs basic equations including the Galerkin weak form. In Section 4, a novel nodal
integration technique based on the Taylor series expansion is presented for 1D and 2D problems. In Section 5,
some 1D and 2D numerical examples are examined to study the accuracy, stability and efficiency of the present
method, and the applicability to problems of complex geometry. Finally, Section 6 concludes this work.
2. RPIM shape functions

Radial basis functions (RBFs) are useful for function approximation based on arbitrary distributed nodes
(Powell, 1992), and RPIM shape functions can be created using RBFs for meshfree methods following a sim-
ple procedure given for example (Liu, 2002). A field function u(x) is first approximated as follows using RBFs
augmented with polynomials in the local support domain of the point of interest.
uðxÞ ¼
Xn

i¼1

RiðxÞai þ
Xm

j¼1

P jðxÞbj ¼ RTðxÞaþ PTðxÞb; ð1Þ
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where Ri(x) and Pj(x) are radial basis functions and polynomial basis functions, respectively, ai and bj are cor-
responding constants, n is the number of field nodes in the local support domain and m is the number of poly-
nomial terms.

There are several types of RBFs, and the multi-quadrics (MQ) (Hardy, 1990) is adopted in this work. The
MQ-RBF is a function of nodal distance ri defined as follows (Liu, 2002):
RiðxÞ ¼ ðr2
i þ ðacdcÞ2Þq; ð2Þ
where dc is the average nodal spacing near the point of interest x; ac and q are two arbitrary real numbers of
dimensionless parameters, and
ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ

2
q

: ð3Þ
The polynomial basis function usually has the following terms,
PTðxÞ ¼ f1; x; y; x2; xy; y2; . . .g: ð4Þ
In this study, linear polynomials are used in the augmentation.
To perform the interpolation, a local support domain of the point of interest will be taken and the field

values at the nodes in this domain will be used to implement the interpolation. In this work, a circular domain
centered at the point of interest is adopted. The dimension of the local support domain, defined as the radius
of the circle, is given by,
ds ¼ asdc; ð5Þ
where as is a positive real number of dimensionless size of the local support domain.
Constants ai and bj in Eq. (1) can be determined by enforcing the field function pass through all n field

nodes in the local support domain. At the kth point, it has the following form:
uðxk; ykÞ ¼
Xn

i¼1

Riðxk; ykÞai þ
Xm

j¼1

P jðxk; ykÞbj; k ¼ 1; 2; . . . ; n: ð6Þ
The matrix form of the above equation can be expressed as
Ue ¼ Rqaþ Pmb: ð7Þ
where Ue is the vector of function values at the nodes in the local support domain
Ue ¼ f u1 u2 . . . un gT
: ð8Þ
Rq is the moment matrix of RBFs,
Rq ¼

R1ðr1Þ R2ðr1Þ . . . Rnðr1Þ
R1ðr2Þ R2ðr2Þ . . . Rnðr2Þ

. . . . . . . . . . . .

R1ðrnÞ R2ðrnÞ . . . RnðrnÞ

2
66664

3
77775
ðn�nÞ

ð9Þ
Pm is the polynomial moment matrix,
Pm ¼

1 x1 y1 . . . pmðx1Þ

1 x2 y2 . . . pmðx2Þ

. . . . . . . . . . . . . . .

1 xn yn . . . pmðxnÞ

2
666664

3
777775
ðn�mÞ

ð10Þ
a is the vector of unknown coefficients for RBFs,
aT ¼ a1 a2 . . . anf g ð11Þ
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b is the vector of unknown coefficients for polynomial basis functions,
bT ¼ b1 b2 . . . bmf g: ð12Þ
To obtain unique solutions of Eq. (7), the constraint conditions should be applied as follows (Golberg et al.,
1999),
Xn

i¼1

pjðxiÞai ¼ PT
ma ¼ 0; j ¼ 1; 2; . . . ;m: ð13Þ
Combination of Eqs. (7) and (13) yields the following equations in the matrix form:
~Ue ¼
Ue

0

� �
¼

Rq Pm

PT
m 0

� �
a

b

� �
¼ Ga0; ð14Þ
where
~Ue ¼
Ue

0

� �
¼ u1 u2 . . . un 0 0 . . . 0f gT

: ð15Þ
Unique solution is obtained if the inverse of matrix G exists:
a0 ¼
a

b

� �
¼ G�1 ~Ue: ð16Þ
Note that R�1
q usually exists for arbitrarily scattered nodes (Hardy, 1990; Schaback, 1994; Wendland, 1998).

Therefore, there is no singularity problem in the RPIM because only a small number of nodes (usually 10–40
for 2D problems) are used in the local support domain (Liu, 2002; Liu and Gu, 2005).

Substituting Eq. (16) into Eq. (1), the interpolation can be expressed as
uðxÞ ¼ RTðxÞ PTðxÞ
� �

G�1 ~Ue ¼ ~UðxÞ~Ue: ð17Þ
Finally, the RPIM shape functions for the corresponding n field nodes can be obtained as
UTðxÞ ¼ /1ðxÞ /2ðxÞ . . . /nðxÞf g: ð18Þ
The approximation function can be written as
uðxÞ ¼ UTðxÞUe ¼
Xn

i¼1

/iui: ð19Þ
The derivatives of u(x) can be easily obtained as
u;kðxÞ ¼ UT
;kðxÞUe; ð20Þ
where k denotes the coordinates x or y. A comma designates a partial differentiation with respect to the indi-
cated spatial coordinate that follows.

3. Galerkin weak form

Consider a two-dimensional solid problem defined in domain X bounded by C (C = Ct + Cu), the governing
equations of this problem can be expressed as follows (Timoshenko and Goodier, 1970).

Equilibrium equation:
LTrþ b ¼ 0 in X: ð21Þ
Natural and essential boundary conditions:
r � n ¼ �t on Ct ð22Þ
u ¼ �u on Cu; ð23Þ
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where LT ¼
o
ox 0 o

oy

0 o
oy

o
ox

" #
is differential operator; rT ¼ f rxx ryy sxy g is the stress vector, uT ¼ f u v g is the

displacement vector, bT ¼ f bx by g is the body force vector, �t is the prescribed traction on the natural bound-
aries, �u is the prescribed displacement on the essential boundaries, and n is the vector of unit outward normal
at a point on the natural boundary.

The unconstrained Galerkin weak form of Eq. (21) is presented as follows (Liu, 2002):
Z
X
ðLduÞTðDLuÞdX�

Z
X

duTbdX�
Z

Ct

duTtdC ¼ 0: ð24Þ
For linear elasticity, the material matrix D is expressed as follows:
D ¼ E
1� v2

1 v 0

v 1 0

0 0 1�v
2

2
64

3
75 for plane stress problem;

D ¼ Eð1� vÞ
ð1þ vÞð1� 2vÞ

1 v
1�v 0

v
1�v 1 0

0 0 1�2v
2ð1�vÞ

2
64

3
75 for plane strain problem;

ð25Þ
where E is Young’s modulus and v is Poisson’s ratio.
Substituting the approximation equation Eq. 19 into Eq. (24) yields,
Ku ¼ f; ð26Þ
where
Kij ¼
Z

X
BT

i DBj dX; ð27Þ

f i ¼
Z

Ct

/i
�tdCþ

Z
X

/ibdX; ð28Þ

Bi ¼
/i;x 0

0 /i;y

/i;y /i;x

2
64

3
75: ð29Þ
4. A nodal integration technique

Consider now an integral,
I ¼
Z

X
f ðxÞdX; ð30Þ
where f(x) is an arbitrary function integrable, which is, for example, a component of matrix BT
i DBj given in

Eq. (27); X is the domain of the problem, that is represented by a set of N nodes distributed in the problem
domain.

In a nodal integration scheme, the domain X is divided into a set of non-overlapping sub-domains
Xi(i = 1,2, . . . ,N), each of them includes a node, and X ¼

PN
i¼1Xi. Then the integration, Eq. (30), can then

be expressed as
I ¼
XN

i¼1

Z
Xi

f ðxÞdXi: ð31Þ
In a meshfree method based on weak form, a background mesh is needed for the implementation of numerical
integration. For the present method, a background mesh is used for constructing the nodal integration domain
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for each node. The background mesh is not used for shape function construction which is constructed using a
same set of nodes located in a local support domain. The free of mesh from shape function construction has
many advantages including the improvement in accuracy, which will be observed later in examples. This fact
has also been found in many other existing works (Belytschko et al., 1994; Atluri and Zhu, 1998; Chen et al.,
2001). It is very clear that one does not have to use mesh for shape function construction. In the present work,
the mesh is also only used for integration purpose.

The question now is how to evaluate
R

Xi
f ðxÞdXi over the nodal integration domain Xi. Here we present a

novel and simple approach based on the Taylor series extension. The basic idea of this approach is to extend
the integral function into some terms of Taylor series, and the integration will be approximately performed on
these terms. Note that the integrand f(x) is required to be differentiable within the integration domain when it
is extended to be terms of Taylor series. Therefore, we construct RPIM shape functions using the same set of
nodes in each integration domain. A shape function so constructed is one-piece, and hence is differentiable to
any order in the integration domain. Note that the discontinuity will occur on the interfaces of the integration
domains, and hence causes the non-conformability, which is omitted in this work, as it is controlled by the use
of RBF shape functions with proper shape parameters (Liu, 2002). Note that this kind of non-conformability
exists for all the meshfree methods based on weak form and nodal integration even the ones using MLS shape
functions, unless strain smoothing technique is used (Chen et al., 2001; Liu et al., 2005a; Liu et al., 2006).

For comparison, the EFG method based on the present nodal integration scheme is also coded, in which
shape functions are obtained using the MLS method (Belytschko et al., 1994). For convenience in this paper,
we label this method as NI-MLS. It is known that the MLS shape functions can be constructed to satisfy the
compatibility condition and the continuity of the field function approximation is ensured (Liu, 2002).

4.1. Nodal integration technique for 1D problems

To explain our method more clearly, we start with one-dimensional problems. Based on Taylor series exten-
sion, a continuous function f(x) can be approximated in the vicinity of a point x0 as follows:
f ðxÞ � f ðx0Þ þ f 0ðx0Þxþ
f 00ðx0Þ

2!
x2; ð32Þ
where the third-order and above are truncated.
The integration for the function f(x) in the domain (x1 6 x 6 x2) can then be evaluated as,
Z x2

x1

f ðxÞdx �
Z x2

x1

ðf ðx0Þ þ f 0ðx0Þxþ
1

2
f 00ðx0Þx2Þdx

¼
Z x2

x1

f ðx0Þdxþ
Z x2

x1

f 0ðx0Þxdxþ 1

2

Z x2

x1

f 00ðx0Þx2 dx ð33Þ

¼ f ðx0Þðx2 � x1Þ þ
1

2
f 0ðx0Þðx2

2 � x2
1Þ þ

1

6
f 00ðx0Þðx3

2 � x3
1Þ:
Considering now a one-dimensional (1D) problem to be solved using RPIM. The problem domain is presented
by a set of nodes, as shown in Figs. 1 and 2. The integrand of f(x) is now a component of the matrix BT

i DBj

(see Eq. (27)). When the field nodes are regularly distributed, by using Eq. (33), the numerical integration for
the ith node can be performed as follows.

For an internal node, we obtain
a
i

2/a
0 x

2/a

Integration domain for the thi  node 

Fig. 1. Nodal integration domain for regularly distributed nodes for 1D problem.
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x
2/a 2/b

Integration domain for the thi  node 

c d

i

0

Fig. 2. Nodal integration domain for irregularly distributed nodes for 1D problem.
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Z a
2

�a
2

f ðxÞdx ¼ f ðxiÞ
a
2
þ a

2

	 

þ 1

2
f 0ðxiÞ

a
2

	 
2

� � a
2

	 
2
� �

þ 1

6
f 00ðxiÞ

a
2

	 
3

� � a
2

	 
3
� �

¼ f ðxiÞaþ 0þ 1

24
f 00ðxiÞa3; ð34Þ
where a is the nodal spacing as shown in Fig. 1.
For the node located at the left end of the 1D domain, we have
Z a

2

0

f ðxÞdx ¼ f ðxiÞ
a
2
� 0

	 

þ 1

2
f 0ðxiÞ

a
2

	 
2

� 0

� �
þ 1

6
f 00ðxiÞ

a
2

	 
3

� 0

� �

¼ 1

2
f ðxiÞaþ

1

8
f 0ðxiÞa2 þ 1

48
f 00ðxiÞa3: ð35Þ
For the node located at the right end of the 1D domain,
Z 0

a
2

f ðxÞdx ¼ f ðxiÞ 0þ a
2

	 

þ 1

2
f 0ðxiÞ 0� a

2

	 
2
� �

þ 1

6
f 00ðxiÞ 0� � a

2

	 
3
� �

¼ 1

2
f ðxiÞa�

1

8
f 0ðxiÞa2 þ 1

48
f 00ðxiÞa3: ð36Þ
When the field nodes are irregularly distributed, Eqs. (34)–(36) can be expressed as follows.
For an internal node:
Z b
2

�a
2

f ðxÞdx ¼ f ðxiÞ
b
2
þ a

2

� �
þ 1

2
f 0ðxiÞ

b
2

� �2

� � a
2

	 
2
" #

þ 1

6
f 00ðxiÞ

b
2

� �3

� � a
2

	 
3
" #

¼ 1

2
f ðxiÞðaþ bÞ þ 1

8
f 0ðxiÞðb2 � a2Þ þ 1

48
f 00ðxiÞða3 þ b3Þ: ð37Þ
For the node located at the left end of the 1D domain:
Z c
2

0

f ðxÞdx ¼ f ðxiÞ
c
2
� 0

	 

þ 1

2
f 0ðxiÞ

c
2

	 
2

� 0

� �
þ 1

6
f 00ðxiÞ

c
2

	 
3

� 0

� �

¼ 1

2
f ðxiÞcþ

1

8
f 0ðxiÞc2 þ 1

48
f 00ðxiÞc3: ð38Þ
For the node located at the right end of the 1D domain:
Z 0

�d
2

f ðxÞdx ¼ f ðxiÞ 0þ d
2

� �
þ 1

2
f 0ðxiÞ 0� � d

2

� �2
" #

þ 1

6
f 00ðxiÞ 0� � d

2

� �3
" #

¼ 1

2
f ðxiÞd �

1

8
f 0ðxiÞd2 þ 1

48
f 00ðxiÞd3; ð39Þ
where a, b, c and d are nodal spacing for the irregularly distributed nodes as shown in Fig. 2.
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4.2. Nodal integration technique for 2D problems

Applying Taylor series extension, a two-dimensional (2D) continuous function f(x,y) can be approximated
in the vicinity of point (x0,y0) as follows:
f ðx; yÞ � f ðx0; y0Þ þ x
o

ox
þ y

o

oy

� �
f ðx0; y0Þ þ

1

2!
x

o

ox
þ y

o

oy

� �2

f ðx0; y0Þ: ð40Þ
The integration for function f(x,y) over the nodal integration domain Xi can be expressed as
Z Z
Xi

f ðx; yÞdX �
Z Z

Xi

f ðx0; y0Þ þ x
o

ox
þ y

o

oy

� �
f ðx0; y0Þ þ

1

2!
x

o

ox
þ y

o

oy

� �2

f ðx0; y0Þ
 !

dX

¼ f ðx0; y0Þ
Z Z

Xi

1dXþ f;xðx0; y0Þ
Z Z

Xi

xdXþ f;yðx0; y0Þ
Z Z

Xi

y dX

þ 1

2
f;xxðx0; y0Þ

Z Z
Xi

x2 dXþ f;xyðx0; y0Þ
Z Z

Xi

xy dXþ 1

2
f;yyðx0; yoÞ

Z Z
Xi

y2 dX ð41Þ

¼ f ðx0; y0ÞAi þ f;xðx0; y0ÞMyi þ f;yðx0; y0ÞMxi

þ 1

2
f;xxðx0; y0ÞMyyi þ f;xyðx0; y0ÞMxyi þ

1

2
f;yyðx0; y0ÞMxxi;
where Ai is the area of the nodal integration domain of the ith node,
Mxi ¼
Z Z

Ai

y dAi Myi ¼
Z Z

Ai

xdAi ð42Þ
are the area moments of first-order for the integration domain of the ith node, and
Mxxi ¼
Z Z

Ai

y2 dAi; Myyi ¼
Z Z

Ai

x2 dAi; Mxyi ¼
Z Z

Ai

xy dAi ð43Þ
are the area moments of second-order for the integration domain of the ith node.
The integration for function f(x,y) along the boundary line can be formulated as
Z

C
f ðx; yÞdl ¼

Z
C

f ðx0; y0Þ þ x
o

ox
þ y

o

oy

� �
f ðx0; y0Þ þ

1

2!
x

o

ox
þ y

o

oy

� �2

f ðx0; y0Þ
 !

dl

¼ f ðx0; y0Þ
Z

C
1dlþ f;xðx0; y0Þ

Z
C

xdlþ f;yðx0; y0Þ
Z

C
y dl ð44Þ

þ 1

2
f;xxðx0; y0Þ

Z
C

x2 dlþ f;xyðx0; y0Þ
Z

C
xy dlþ 1

2
f;yyðx0; yoÞ

Z
C

y2 dl:
To apply the nodal integration technique, a background cell is needed to divide the problem domain into nod-
al integration domains, each of which includes a node. When the nodes are regularly distributed, a rectangular
domain can be used as the nodal integration domain Xi (illustrated in Fig. 3), and the union of all the rect-
angles forms the problem domain. As shown in Fig. 4, when the nodes are irregularly distributed, a tessellation
can always be generated automatically by joining the centroids of the triangles and the mid-edge points
(Ferziger and Peric, 1999).

According to Eq. (41), the area Ai and the moments Mxi, Myi, Mxxi, Myyi and Mxyi for the ith field node can
be calculated during the pre-process stage for later use in the numerical integration, because they depend on
only the geometry of the nodal integration domain.

5. Numerical examples

Several numerical examples are studied in this section. The materials used in the examples are all linear elas-
tic with Young’s modulus E = 3.0 · 107 and poisson’s ratio v = 0.3. The units used in this paper can be any
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Fig. 4. Illustration of triangular background cells and the integral domain for the ith node in two dimensions.
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Fig. 3. Illustration of rectangular background cells and integral domain for the ith node in two dimensions.
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consistent unit based on international standard unit system. The error indicators in displacement and energy
are, respectively, defined as follows:
Ed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðuexact

i � unumerical
i Þ2Pn

i¼1ðuexact
i Þ2

s
ð45Þ

Ee ¼
1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Z
X
ðeexact � enumericalÞTDðeexact � enumericalÞdX

s
; ð46Þ
where the superscript exact notes the exact or analytical solution, numerical notes a numerical solution ob-
tained using a numerical method including the present NI-RPIM, and A is the area of the problem domain.

5.1. A one-dimension bar subjected to body force

A simple benchmark problem of 1D bar subjected to body force is studied first. The governing equation
and the boundary conditions are shown as follows:
E
o2uðxÞ
ox2

þ 10x ¼ 0 ð0 6 x 6 10Þ; ð47Þ

uð0Þ ¼ 0; uð10Þ ¼ 0: ð48Þ
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Fig. 5. Exact and numerical solutions of u and du/dx for the one-dimensional bar problem.
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The analytical solution of this simple problem has the following polynomial form:
uðxÞ ¼ � 5

3E
x3 þ 500

3E
x: ð49Þ
In this study, 11 regularly distributed nodes are adopted. Solutions of field function u and its derivative du/dx

are first obtained using the present method, and compared with the analytical solutions, as shown in Fig. 5. It
shows that the numerical solutions of both the function values and their first-order derivatives are in good
agreement with the analytical solutions.
5.2. A one-dimensional problem with non-polynomial solution

In this study, the following problem is considered:
d2u
dx2
þ 25u ¼ 0 ð0 6 x 6 1Þ; ð50Þ

u;xð0Þ ¼ u;xð1Þ ¼ 1: ð51Þ
The exact solution of u(x) can be easily found as follows:
uðxÞ ¼ cos 5� 1

5 sin 5
cos 5xþ 1

5
sin 5x ð52Þ
which is not in polynomial form.
The numerical solutions of u(x) and du(x)/dx are obtained using the present method with eleven regularly

distributed nodes, and the results are shown in Figs. 6 and 7 together with the analytical solutions. A very
good agreement is again observed. A convergence study is also performed by using seven different nodal den-
sities (4, 7, 13, 25, 49, 97 and 193 regular nodes). The error results of function value computed using Eq. (45) is
shown in Fig. 8. and the convergence rate is about 1.94.
5.3. A cantilever beam

A benchmark problem of 2D cantilever beam in Fig. 9 is now studied. The beam is of length L, height D

and subjected to parabolic traction at the free end. As the beam has a unit thickness, it can be taken as a plane
stress problem and the analytical solutions of displacement and stress components are shown as follows (Tim-
oshenko and Goodier, 1970),
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ux ¼ �
py

6EI
ð6L� 3xÞxþ ð2þ mÞ y2 � D2

4

� �� �
; ð53Þ

uy ¼
p

6EI
3my2ðL� xÞ þ ð4þ 5mÞD

2x
4
þ ð3L� xÞx2

� �
; ð54Þ
where the moment of the inertia of the beam is given as I = D3/12.
The stress components corresponding to above displacements are as,
rx ¼ �
pðL� xÞy

I
; ð55Þ

ry ¼ 0; ð56Þ

rxy ¼
p
2I

D2

4
� y2

� �
: ð57Þ
The values of the parameters are taken as: L = 50, D = 10 and p = �1000.
5.3.1. Effect of shape parameters

First, the effect of two shape parameters (q,ac) in MQ-RBF that used to create the RPIM shape functions is
studied through this benchmark problem. The problem domain is represented by 196 regular nodes and 181
irregular nodes (as shown in Fig. 10). In the process of the study of q, ac is fixed at 4.0, a circular local support
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5
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0 5 10 15 20 25 30 35 40 45 50
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5
196 regularly distributed nodes

Fig. 10. Illustration of regular and irregular nodes distribution for the problem of cantilever beam.
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domain is adopted, and as is fixed at 3.0. For different values of q (varies from 0.01 to 1.98), error of displace-
ment defined in Eq. (45) is computed using the present NI-RPIM method and plotted in Fig. 11. Note that the
value of q must not be an integer number, because it will cause the failure of the RPIM due to the singularity
of the moment matrix (Liu, 2002). Fig. 11 shows that a range of 0.4–1.0 for parameter q will lead to better
results for both regular and irregular nodes distribution. Based on previous study results (Liu, 2002),
q = 1.03 was found good and hence is adopted in the present method. In the following study of effect of
parameter ac, a circular support domain is used and as is fixed at 3.0. Value of ac varies from 1.0 to 7.0
and the errors of displacement obtained using the present method are plotted in Fig. 12. The figure shows that
a value of ac around 4.0 will lead to better results for both regular and irregular nodes distributions. It is con-
sistent with the previous conclusions obtained by other authors (Wang and Liu, 2002b; Liu et al., 2005b).
Therefore ac = 4.0 is used in this work for the following problems.

5.3.2. Effect of dimension of the local support domain

The dimension of the local support domain controls the number of field nodes used in the RPIM shape
function construction, and can affect the numerical results. Values of shape parameters are fixed as
(q = 1.03, ac = 4.0), different values of as are examined and the displacement errors obtained for regular
and irregular nodes distribution are plotted in Fig. 13, respectively. Based on this study, as of 2.5–3.5 that
includes 12–40 field nodes provides good results and is used in this work.

5.3.3. Numerical results of the cantilever beam

The beam is studied using both the regular and irregular modes of nodes distribution (shown in Fig. 10).
The numerical results of displacement in y direction along the neutral line and the shear stress along the mid-
dle line are obtained using the present method with 196 regular and 181 irregular nodes distribution and plot-
ted in Figs. 14 and 15, respectively. The pictures show that the numerical solutions of displacement and stress
components are all in good agreement with the analytical ones and the mode of nodal distribution has little
effect on the results.

5.3.4. Comparison study of convergence and efficiency

To study the properties of convergence and efficiency, the cantilever beam is studied using three models of
regular nodes (85, 297 and 1105 nodes distribution). Four different methods are used in the analysis: the tra-
ditional FEM with 4-node quadrilateral element, the original RPIM with Gauss integration scheme, the NI-
MLS method and the present NI-RPIM. For the RPIM using Gauss integration, 2 · 2 Gauss points are
employed for each quadrilateral background cell. The NI-MLS is formulated using linear and quadratic
polynomial basis functions, respectively, and they are labeled, respectively, as linear NI-MLS and quadratic
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NI-MLS in this work. The results of displacement and energy errors against h are plotted in Fig. 16 for these
four methods, where h is the average nodal spacing for the nodes distribution. The picture shows that the
RPIM, the quadratic NI-MLS, and the present NI-RPIM would be more accurate than the FEM and the lin-
ear NI-MLS. In Fig. 17, the errors of the numerical results obtained using these four methods are plotted
against the CPU time consumed, which shows the performance of efficiency. It can be found that the three
methods, i.e. the RPIM, the quadratic NI-MLS, and the NI-RPIM, are more efficient than the FEM. Com-
pared with the original RPIM with Gauss integration, the NI-RPIM is more efficient when using the present
simple nodal integration scheme.

5.4. An infinite plate with a hole

An infinite plate with a hole (a = 10 units) subjected to a tensile of 10 units is examined. Due to two-fold
symmetry, only one quarter is modeled, as shown in Fig. 18. In the model, the analytical solutions of stress
components are applied on the boundaries at x = 50 and y = 50. The essential boundary conditions are
Fig. 16
beam
param
weight
as = 3.
uðx ¼ 0Þ ¼ 0 ð10 6 y 6 50Þ; vðy ¼ 0Þ ¼ 0 ð10 6 x 6 50Þ: ð58Þ

The analytical solution of this problem is used below (Timoshenko and Goodier, 1970),
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In this study, the problem is analyzed as plane stress and the domain is represented by 489 irregularly distrib-
uted nodes (shown in Fig. 18). The numerical displacement solutions along two boundary lines (x = 0;y = 0)
and the normal stress solutions along the line (x = 0) are plotted in Figs. 19 and 20, respectively. The figures
show that the numerical solutions obtained using the present method are in a very good agreement with the
analytical solutions also for this benchmark problem.

5.5. Internal pressurized hollow cylinder

A hollow cylinder subjected to internal pressure (shown in Fig. 21) is also analyzed. The cylinder is of inter-
nal radius a = 10, outer radius b = 25, and internal pressure p = 100 units. Plain strain condition is considered
and the analytical solutions can be written as (Timoshenko and Goodier, 1970),
ur ¼
pa2

Eðb2 � a2Þr
½ð1� vÞr2 þ ð1þ vÞb2�; ð65Þ

rr ¼
a2p

b2 � a2
1� b2

r2

� �
; ð66Þ

rh ¼
a2p

b2 � a2
1þ b2

r2

� �
: ð67Þ
10 15 20 25 30 35 40 45 50
-6

-5.5

-5

-4.5

-4

-3.5

-3
x 10

-6

y

n
oitc

eri
d y 

ni  t
n

e
m

e c
al

ps i
D

Analytical solu.
NI-RPIM solu.

10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

1.8

2
x 10

-5

x

n
oitc

eri
d x 

ni t
n

e
m

ec
al

ps i
D

Analytical solu.
NI-RPIM solu.

Fig. 19. Displacement distribution along two boundary lines (x = 0 and y = 0).
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The problem is discretized by 123 irregularly distributed nodes (shown in Fig. 21). The numerical solutions
using the present method are plotted in Figs. 22 and 23. The figures show that both the displacement and stress
solutions, obtained using the present NI-RPIM method, coincide well with the analytical ones.
5.6. An automotive part: connecting rod

Finally, a typical connecting rod used in automobiles, as shown in Fig. 24, is studied using the present
method. The value of the pressure is 100 units. As shown in Fig. 25, the rod is discretized using 592 irregularly
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distributed nodes. Along the middle dashed line (shown in Fig. 24), the displacement and the normal stress
components in x direction of the nodes are plotted. Because the exact solution is not available, the reference
solution is obtained using the ANSYS with a very fine mesh of 7756 6-node triangular elements. The numer-
ical solutions obtained using the present method are plotted in Figs. 26 and 27 with the reference ones. The
figures show that, the present method can obtain very good results of both the displacement and stress
components.
6. Conclusions

In this work, a nodal integration technique for meshfree radial point interpolation method (NI-RPIM) is
proposed. This method employs radial basis functions (RBFs) augmented with polynomials to construct shape
functions. Galerkin weak form is adopted and a nodal integration scheme based on Taylor series extension is
introduced to perform the numerical integration. Some numerical examples are examined and the effects of
shape parameters as well as the dimension of the local support domains are investigated. From the research
work, the following conclusions can be drawn.

• Shape functions generated using RBFs augmented with polynomials possess the Delta property, which
allows straightforward imposition of point essential boundary conditions.

• Based on the study of examples in this paper and the previous works on RPIM, q = 1.03 and ac = 4 are
recommended for NI-RPIM.

• For the circular support domain, as = 2.5–3.5 which includes 12–40 field nodes are suggested.
• The benchmark numerical examples show that the results obtained using the present nodal integration tech-

nique is accurate and stable.
• Compared with the traditional FEM, the NI-RPIM will be more accurate and more efficient; compared

with the original RPIM adopting Gauss integration scheme, the NI-RPIM can achieve higher convergence
rate and efficiency; compared with the NI-MLS, the NI-RPIM performs much better than the linear NI-
MLS and is almost in the same level of performance of quadratic NI-MLS.
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